Paper – High-Resistance Layers for Front Contact Interfaces in Sb2Se3 Solar Cells

Introduction Literature review during a research project is essential to avoid duplicate work. I mean If something is already study we don't need to re-invent the wheel. In that case we should take advantage from the published paper to replicate the results and then push the knowledge forward with our new discoveries. This time I will read and take notes from the paper "High-Resistance Metal Oxide Window Layers for Optimal Front Contact Interfaces in Sb2Se3 Solar Cells" to learn about the insertion of Metal Oxides as High-Resistive Transport (HRT) layers in antimony selenide (Sb2Se3) solar cells (TCO/HRT/CdS/Sb2Se3/Au). It is already reported that…

Continue ReadingPaper – High-Resistance Layers for Front Contact Interfaces in Sb2Se3 Solar Cells

Paper: Chemically deposited antimony sulfide selenide thin film photovoltaic prototype modules

Authors: P. K. Nair,  José Diego Gonzaga Sánchez, Laura Guerrero Martínez, Perla Yoloxóchitl García Ayala, Ana Karen Martínez Peñaloza, Alessandra Beauregard León, Yareli Colín García, José Campos Álvarez, and M. T. S. NairLink: ECS Journal of Solid State Science and Technology, 8 (6) Q89-Q95 (2019)   Abstract   We present thin film antimony sulfide selenide prototype photovoltaic modules of area, seven cm2 and conversion efficiency (η) of 3.5%. The thin films of Sb2SxSe3-x (x, 0.8–1.6) of 120–180 nm in thickness were deposited on FTO/CdS(80 nm) substrates at 80°C from chemical bath containing potassium antimony tartrate, thioacetamide and sodium selenosulfate. Thin film of…

Continue ReadingPaper: Chemically deposited antimony sulfide selenide thin film photovoltaic prototype modules