Paper: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells

Title: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar CellsAuthors: Stefan G. Haass,* Christian Andres, Renato Figi, Claudia Schreiner, Melanie Bürki, Yaroslav E. Romanyuk, and Ayodhya N. TiwariLink (Open Acess): Adv. Energy Mater. 2018, 8, 1701760 Abstract: Sodium treatment of kesterite layers is a widely used and efficient method to boost solar cell efficiency. However, first experiments employing other alkali elements cause confusion as reported results contradict each other. In this comprehensive investigation, the effects of absorber composition, alkali element, and concentration on optoelectronic properties and device performance are investigated. Experimental results show that in the row Li–Na–K–Rb–Cs the…

Continue ReadingPaper: Complex Interplay between Absorber Composition and Alkali Doping in High-Efficiency Kesterite Solar Cells

Paper: How small amounts of Ge modify the formation pathways and crystallization of kesterites

Authors: S. Giraldo, E. Saucedo, M. Neuschitzer, F. Oliva, M. Placidi, X. Alcobe´, V. Izquierdo-Roca, S. Kim, H. Tampo, H. Shibata, A. Pérez-Rodríguez and P. Pistor Link: Energy Environ. Sci., 2018, 11, 582-593 Abstract: The inclusion of Ge into the synthesis of Cu2ZnSn(S,Se)4 absorbers for kesterite solar cells has been proven to be a very efficient way to boost the device efficiency in a couple of recent publications. This highlights the importance to elucidate the mechanisms by which Ge improves the kesterite solar cells properties to such a large extent. In this contribution, we first show how controlling the position and…

Continue ReadingPaper: How small amounts of Ge modify the formation pathways and crystallization of kesterites