Skip to content
Jesús Capistrán
  • About me
  • Blog
  • Courses
  • Publications
  • Log In
  • Toggle website search
Menu Close
Search this website

Mecánica de Fluidos

  • Home
  • Courses
  • Course
  • Mecánica de Fluidos

Mecánica de Fluidos

Curriculum

  • 7 Sections
  • 63 Lessons
  • 16 Weeks
Expand all sectionsCollapse all sections
  • Información general
    Reglas generales del curso
    6
    • 1.1
      Clases online
    • 1.2
      Perfil y Materias
    • 1.3
      Mapa semestral
    • 1.4
      Evaluación
    • 1.5
      Cronograma de Actividades
    • 1.6
      Bibliografía
  • Conceptos básicos
    13
    • 2.1
      1. Introducción
    • 2.2
      1.1 Esfuerzo cortante
    • 2.3
      1.2 Aplicación de la Mecánica de Fluidos en Energías Renovables
    • 2.4
      Tarea – Semana 1
    • 2.5
      1.3 Condición de no-deslizamiento
    • 2.6
      1.4.0 Clasificación de los flujos de fluidos – I
    • 2.7
      1.4.1 Clasificación de los flujos de fluidos – II
    • 2.8
      1.5 Sistemas y volumen de control
    • 2.9
      Tarea – Semana 2
    • 2.10
      1.6 Dimensione y Unidades
    • 2.11
      1.7 Técnica para la resolución de problemas
    • 2.12
      Evaluación – Conceptos básicos
    • 2.13
      1.8 Modelado en Ingeniería
  • Propiedades de los fluidos
    15
    • 3.1
      2.1 Densidad y gravedad específica (densidad relativa)
    • 3.2
      Tarea Semana 4 – Google Colab y Mecánica de Fluidos
    • 3.3
      2.2 Presión de vapor y cavitación
    • 3.4
      Ejercicio – Presión de vapor y Olla Express
    • 3.5
      2.3.1 Energía y calor específicos – I
    • 3.6
      2.3.2 Energía y calor específicos – II
    • 3.7
      Tarea Semana 6 – Eficiencia de un calentador solar
    • 3.8
      2.4.1 Coeficiente de compresibilidad
    • 3.9
      2.4.2 Coeficiente de expansión volumétrica
    • 3.10
      Ejercicios de compresibilidad y expansión volumétrica
    • 3.11
      Tarea Semana 6 – Eficiencia de un calentador solar (python)
    • 3.12
      2.5 Viscosidad dinamica y cinematica
    • 3.13
      2.6 Tensión superficial: efecto capilar
    • 3.14
      Evaluación Unidad 2
    • 3.15
      Resumen de la unidad 1 y 2 (Interacción Grupo)
  • Presión y estática de fluidos
    7
    • 4.1
      Presión: manometrica, de vacío y absoluta
    • 4.2
      Equipos de medición de presión
    • 4.3
      Variación de presión con la profundidad
    • 4.4
      Principio de funcionamiento de maquinaria hidráulica
    • 4.5
      Medición de caída de presión con manómetro
    • 4.6
      Tarea: Aplicaciones de la Estática de Fluidos
    • 4.7
      Teorema de Transporte de Reynolds
  • Cinemática de fluidos
    14
    • 5.1
      Introducción a la cinemática de fluidos
    • 5.2
      Campo de flujo (Video)
    • 5.3
      Ejemplo – Campo de velocidad bidimensional estacionario
    • 5.4
      Aplicaciones del Campo de Velocidades
    • 5.5
      Descripción Lagrangiana del movimiento de un fluido
    • 5.6
      Descripción Euleriana del movimiento de un fluido
    • 5.7
      Campo de aceleración
    • 5.8
      Derivada Material , Aceleración material
    • 5.9
      Visualización: Líneas de Corriente
    • 5.10
      Visualización: Líneas de Trayectoria
    • 5.11
      Visualización: Líneas de traza
    • 5.12
      Tarea: Arma un cañon de vórtices
    • 5.13
      Vorticidad y rotacionalidad
    • 5.14
      Teorema de Transporte de Reynolds
  • Conservación masa, Energía (Bernoulli)
    8
    • 6.1
      Introducción
    • 6.2
      Principio de Conservación de la masa
    • 6.3
      Aplicaciones – Conservación de la masa
    • 6.4
      Actividad de clase: Descarga de agua de un tanque
    • 6.5
      Observa y describe: Huracan
    • 6.6
      Ecuación de Bernoulli (English Video)
    • 6.7
      Actividad: Google Colab + Huracán
    • 6.8
      Deducción de la Ec. de Bernoulli
  • Flujo en tuberias
    0

    Teorema de Transporte de Reynolds

    Print Friendly, PDF & Email

    Objetivo

    • Conocer el teorema de transporte de Reynolds
    • Conocer la transición de un sistema cerrado a un sistema abierto (Volumen de control)

    • La mayoría de los principios de la mecánica de fluidos se adoptan de la mecánica de los sólidos, en donde las leyes físicas que se refieren a las razones de cambio respecto del tiempo de propiedades extensivas se expresan para sistemas (cerrados).
    • En la mecánica de fluidos, con frecuencia es más conveniente trabajar con volúmenes de control y, por lo tanto, surge la necesidad de relacionar los cambios en un volumen de control con los cambios en un sistema.
    El teorema del transporte de Reynolds (RTT) proporciona un vínculo entre el enfoque de sistema y el de volumen de control.
    • La relación entre las razones de cambio respecto del tiempo de una propiedad extensiva para un sistema y para un volumen de control se expresa por el teorema del transporte de Reynolds (RTT, Reynolds transport theorem), el cual proporciona el vínculo entre los enfoques de sistema y de volumen de control.
    a) se sigue el fluido conforme se mueve y se deforma. Éste es el enfoque de sistema (ninguna masa cruza la frontera y la masa total del sistema permanece fija). b) Se considera un volumen interior fijo de la lata. Éste es el enfoque de volumen de control (la masa cruza la frontera).

    Propiedades extensivas: B

    • Masa
    • Energía
    • Cantidad de movimiento (m\vec{V})

    Propiedades intensivas: b = B/m


    Deducción del Teorema de Transporte de Reynolds

    La siguiente ecuación expresa que la razón de cambio respecto del tiempo de la propiedad B (extensiva) del sistema es igual a la razón de cambio de B respecto del tiempo del volumen de control más el flujo neto de B hacia fuera de este volumen debido a la masa que cruza la superficie de control.

    1.- Identificar el sistema y el volumen de control

    2.- Encontrar la razón de cambio d/dt (sistema)

    3. Simplificamos utilizando notación de derivadas : \delta t -> 0

    4. Reacomodar en término de propiedades intensivas: b

    Video 1 (Fluidomanos)

    Video 2 (Fluidomanos)

    Actividad (Tomar notas )

    • El tema es un poco complicado por lo tanto se debe tomar notas en su cuaderno para visualizar de donde sale el teorema de transporte de reynolds.
    • Prestar atención al concepto de sistema (cerrado) y volumen de control (sistema abierto).

    Leave a Reply Cancel reply

    You must be logged in to post a comment.

    Continue with Facebook
    Continue with Google
    Vorticidad y rotacionalidad
    Prev
    Introducción
    Next
    • About me
    • Blog
    • Courses
    • Publications
    • Log In
    ©Copyright 2025 - All thoughts and opinions are my own and do not reflect those of my institution.
    • About me
    • Blog
    • Courses
    • Publications
    • Log In
     

    Loading Comments...
     

    You must be logged in to post a comment.

      Modal title

      Main Content