Benemérita Universidad Autónoma de Puebla

Instituto de Ciencias

Centro de Investigaciones en Dispositivos Semiconductores

De la Electromecánica hacia la Investigación de Dispositivos Semiconductores

PRESENTA:

Dr. Jesús Capistrán Martínez

Contenido

1. Ingeniería Electromecánica

Generación de energía eléctrica

2. UNAM - Posgrado en Ingeniería en Energía

Especialidad: Solar fotovoltaica

3. BUAP - Posgrado en Dispositivos semiconductores

Celda solar flexible de película delgada

1. Ingeniería Electromecánica Generación de energía eléctrica

Ingeniería

Principales ramas de la ingeniería.

Aplicación de **conocimientos científicos** para resolver problemas prácticos y desarrollar soluciones que mejoren la calidad de vida del ser humano

Ingeniería Electromecánica

https://www.edsrobotics.com/blog/que-es-la-automatizacion-industrial/

Se centra en el diseño, desarrollo, prueba y mantenimiento de sistemas y dispositivos que involucran tanto componentes eléctricos como mecánicos.

Dispositivos Electromecánicos: motores, generadores, actuadores, sensores, etc.

Puente rectificador de diodos

Puente rectificador de diodos: CA \rightarrow CC

 $\pi \frac{3\pi/2}{2\pi} \frac{2\pi}{\Omega t}$

Rectificador trifásico de onda completa: Señal rectificada de corriente continua

https://www.cienciasfera.com/materiales/electrotecnia/tema20/32_rectificador_trifsico_de_onda_completa.html

 $\pi/2$

ωt

Generación de energía eléctrica

Central Hidroelétrica

Central Nucleoeléctrica

Ing. C. Ramírez Ulloa (El Caracol) - 600 MW

Cuenta con tres (3) unidades generadoras donde las turbinas son tipo Francis con capacidad de 200 MW cada una Laguna verde - 1620 MW

Cuenta con dos reactores BWR (Boiling Water Reactor) diseñados por General Electric con capacidad de 810 MW cada uno

2. Posgrado en Ingeniería en Energía Especialidad: Solar Fotovoltaica (IER-UNAM)

Generación de energía en México

Generación de energía eléctrica por tecnología en México (2021)

https://energia.conacyt.mx/planeas/electricidad/generacion

Energías renovables:

Eólica

Aprovechamiento del viento

Aprovechamiento de la luz solar

Estudiar y trabajar en el sector de las energías renovables es fundamental para mitigar el cambio climático mediante el uso de fuentes de energía limpia y sostenible.

Celdas solares comerciales

El silicio es el **semiconductor** más utilizado en la fabricación de **celdas solares**, en sus tres configuraciones domina más del 90% del mercado fotovoltaico

Tecnologías	Eficiencia [%]	Cuota de mercado [%]	
Silicio monocristalino	26.8	45	Oblaca da Siliaia
Silicio policristalinio	24.4	35	Obleas de Silicio
Silicio amorfo (a-Si:H)	10.2	10	
Teluro de Cadmio (CdTe)	21.0	5	Película delgada
Selenuro de Cobre Indio Galio (CIGS)	23.3	5	

M.A. Green et al., Solar cell efficiency tables (Version 63), Progress in Photovoltaics 32 (2024) 3–13.

Solar Photovoltaic Cell Basics, Energy.Gov. (n.d.). https://www.energy.gov/eere/solar/solar-photovoltaic-cell-basics (accessed August 18, 2023).

¿Qué es un material semiconductor?

Lingotes y obleas de silicio monocristalino

Semiconductor intrinseco

Semiconductor Extrínseco

¿Qué es un material semiconductor?

Resistividad eléctrica [ohm cm] en función de la densidad de portadores de carga mayoritarios de silicio. Fuente: <u>PV-Education</u>

https://www.pveducation.org/pvcdrom/materials/general-properties-of-silicon

Materiales semiconductores emergentes para celdas solares

O. Almora et al., Device Performance of Emerging Photovoltaic Materials (Version 3), Advanced Energy Materials. 13 (2023) 2203313

Celdas solares de calcogenuros de antimonio **CIDS-ICUAP** PCE=10.5% 2020 Chen et al. PCE=9.2% PCE=7.10% PCE=7.6% 2020 Li et.al. 2018 Tang et al. PCE=6.5% PCE=7.50% PCE=6.63% 2017 Tang et al. 2014 Seok et.al. PCE=5.6% PCE=6.2% 2015 Tang et PCE=5.70% PCE=6.6% 2013 Ito et.al. PCE=6.14% PCE=5.79% 2014 Seok et al. 2018 Zhang et al. 2014 Tang et al. PCE=6.18% PCE=3.7% 2011 Seok et.al. 2014 Tang et al. PCE=3.21% PCE=5.13% 2014 Seok et.al. 2010 Seok et.al. PCE=2.26% 2014 Tang et al. Sb₂Se₃ PCE=3.37% 2009 Hodes et.al. Sb₂(S,Se)₃ PCE=0.13% 2009 Nair et al Sb_2S_3

Historia del desarrollo de celdas solares de calcogenuros de antimonio: 2009 a 2020

J. Dong et al., Boosting V_{OC} of antimony chalcogenide solar cells: A review on interfaces and defects, Nano Select. (2021) nano.202000288.

Celda solar emergente de Sb₂(S,Se)₃

Estructura de celda solar (Superestrato) de Sb₂(S,Se)₃

Curva característica J-V de celdas solares de Sb₂(S,Se)₃

Diagrama de bandas de energía: Celda solar de sulfuro selenuro de antimonio

Y. Zhao, Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post-Treatment Enabling Sb₂(S,Se)₃ Solar Cells with 10.7% Efficiency, Advanced Energy Materials. 12 (2022) 2103015.

A) Limpieza del TCO - TEC15

B) Depósito químico de CdS

C) Película delgada de CdS sobre TCO

E) Película delgada amorfa Ag-Sb-S

D) Depósito químico de AgSbS₂

J. Capistrán-Martínez, P.K. Nair, Photoconductive thin films of AgSbS₂ in solar cells, Phys. Status Solidi A. 212 (2015) 2869–2876

Semiconductor tipo-n: CdS

Fórmula para depósito por baño químico de sulfuro de cadmio (CdS)

Reactivo	Molaridad [M]	Volumen [ml]
Cd(NO ₃) ₂	0.1	5
(HOCH ₂ CH ₂) ₃ N	3.7	5
NH4OH	15	5
(NH ₂) ₂ CS	0.1	5
H ₂ O		80

Película delgada de CdS de 100 nm depositada a 50 °C durante 2 h.

DRX en haz rasante ($\partial = 0.5^{\circ}$) de película delgada de CdS con estructura cristalina cúbica (a = 0.5790 nm).

J. Capistrán-Martínez, P.K. Nair, Photoconductive thin films of AgSbS₂ in solar cells, Phys. Status Solidi A. 212 (2015) 2869–2876

Semiconductor tipo-p: AgSbS₂

Fórmula para depósito por baño químico de sulfuro de antimonio-plata (AgSbS2)

Reactivo	Molaridad [M]	Cantidad
SbCl₃		0.520 g
(CH ₃) ₂ CO		2 ml
$Na_2S_2O_3$	1	20 ml
AgNO ₃	0.1	10 ml
H ₂ O		48 ml

Película delgada de amorfa de AgSbS₂ con espesor de 350 nm depositada a 10 °C durante 4 h.

DRX en haz rasante ($\partial = 0.5^{\circ}$) de película delgada de AgSbS₂ cúbica (a = 0.5636 nm) con tratamiento térmico en atmósfera de N₂ a 240 °C durante 15 min.

J. Capistrán-Martínez, P.K. Nair, Photoconductive thin films of AgSbS₂ in solar cells, Phys. Status Solidi A. 212 (2015) 2869–2876

Semiconductor tipo-p: AgSb(S,Se)₂

Celda solar de película delgada sobre FTO (Vidrio conductor)

Estructura de celda solar: TCO/CdS/AgSb(S,Se)₂/C-Ag Celda solar de película delgada de Sulfuro Selenuro de Antimonio Plata: AgSb(S,Se)2

Publicación de resultados: Artículo científico

60 years of pss

Silver Antimony Sulfide Selenide Thin-Film Solar Cells via Chemical Deposition

Jesús Capistrán-Martínez, M. T. Santhamma Nair, and P. Karunakaran Nair*

Silver antimony sulfide selenide (AgSbS_{1.3}Se_{0.7}) thin film forms from silver antimony sulfide (AgSbS₂, 700 nm) and amorphous selenium (Se, 300 nm), both obtained via chemical deposition and heated in contact at 180 °C for 30 min in an argon ambient. The face-centered cubic (fcc) structure of AgSbS₂ (cuboargyrite) is maintained in AgSbS_{1.3}Se_{0.7}. The optical bandgap of 1.8 eV (direct forbidden) in AgSbS₂ reduces to 1.47 eV in AgSbS_{1.3}Se_{0.7} with an increase in the lightgenerated current density from 19 to 29 mA cm⁻². The photoconductivity in AgSbS_{1.3}Se_{0.7} of 2 × 10⁻⁵ Ω^{-1} cm⁻¹ is an order of magnitude higher than that in AgSbS₂. A solar cell of SnO₂:F/CdS(80 nm)/AgSbS_{1.3}Se_{0.7}(700 nm)/C-Ag, produced by heating at 280 °C with the graphite (C) electrode applied, shows a conversion efficiency (η) of 0.65%, open-circuit voltage (V_{oc}) of 0.537 V, shortcircuit current density (J_{sc}) of 2.07 mA cm⁻², and fill factor of 0.60. In AgSbS₂ solar cell, η is of 0.54% with a V_{oc} of 0.625 V. The merits of AgSbS_{1.3}Se_{0.7} solar cell to match its J_L are discussed.

at 1.5G (AM1.5G, 1000 W m^{-2}) is nearly $30 \,\mathrm{mA \, cm^{-2}}$,^[5] the same as in highefficiency CdTe and perovskite-structured solar cells, also with E_{g} 1.5 eV.^[6,7] The substitution in AgSbS2 of S sites with Se would lead to an improved diffusion length (L_p or L_n) and collection efficacy of photogenerated carriers across the solar cell. This would happen because the reported drift mobility for holes (μ_p) in AgSbS₂ $0.24 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ increases of to $1500 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$ in AgSbSe₂.^[1] A general trend in chalcogenide semiconductors is that the electron drift mobility (μ_n) is typically higher than $\mu_{\rm p}$.^[6] A higher drift mobility would increase the electron diffusion length $L_n = [(0.026 \text{ V})\mu_n \tau_n]^{\frac{1}{2}}$ in the p-type $AgSbS_{1,3}Se_{0,7}$ absorber in a p/n⁺CdS solar cell. Here, 0.026 V is the thermal voltage at 300 K and τ_n is the minority carrier lifetime for electrons.

Análisis estructural: GIXRD

XRD en haz rasante (∂ = 2 °) de celdas solares de AgSbS₂ (espesor = 700 nm) con incorporación de selenio en N₂ a 300 °C: Celdas solares de AgSbS₂ y AgSb(S_xSe_{1-x})₂

$AgSbS_2 + Se \rightarrow AgSbS_{1.3}Se_{0.7}$

Coeficiente de absorción óptica y brecha de energía

Densidad de corriente fotogenerada (J_L)

Estimación de densidad de corriente fotogenerada (ideal) para AgSbS₂ y AgSbS_{1.4}Se_{0.7} utilizando el espectro de radiación AM1.5 de 1000 W/m²

Fotoconductividad eléctrica (σ_{light})

Conductividad eléctrica de películas delgadas de AgSbS₂, AgSbS_{1.3}Se_{0.7} y CdS bajo iluminación de 1000 W/m² con una lampara de Tungsteno-Halógeno

	Parametro	CdS	AgSbS _{1.3} Se _{0.7}
	Parametro de red [Å]	a = 5.7909	a = 5.5688
	Tamaño de cristal [nm]	6	8
	Espesor [nm]	80	700
	Brecha de energía [eV]	2.47	1.47
С	Conductividad eléctrica [Ω-1cm-1]	9.1x10 ⁻³	1.6x10 ⁻⁵
	Movilidad de arrastre [eV]	5	180
	Densidad de portadores [cm-3]	4.3x10 ¹⁷	7.1x10 ¹⁵

Resumen de parámetros obtenidos de forma experimental para el desarrollo de celda solar TCO/CdS/AgSbS_{1.3}Se_{0.7}/C-Ag

Publicación de resultados: Artículo científico

Figure 5. a,b) *J*–*V* curves in the dark and under illumination with intensity of 1000 W m⁻² showing the cell parameters with efficiency η of 0.54% and 0.65%. c,d) Log-scale plot of *J* in the dark versus *V* for the analyses of the CdS/absorber junction to calculate saturation current density (*J*_o) and the diode ideality factor (*n*).

3. BUAP - Posgrado en Dispositivos Semiconductores

Celda solar flexible de película delgada

Celda solar flexible: CIGS

Celda solar flexible - CIGS

Componentes de una celda solar flexible - CIGS

Dispositivos Flexibles

Las celdas solares flexibles son ligeras y pueden adaptarse a superficies irregulares.

[8] A. Chirilă, S. Buecheler, F. Pianezzi, P. Bloesch, Highly efficient Cu(In,Ga)Se₂ solar cells grown on flexible polymer films, Nature Materials. (2011).

Solución de reacción inicial con sustratos de acero inoxidable

Solución de reacción después de 4 horas de depósito químico

Películas delgadas de AgSbS₂ amorfo sobre acero inoxidable

Reactives	Chemical Formula	Molarity [M]	Quantity
Antimony chloride	$SbCl_3$		520 mg
Acetone	(CH ₃) ₂ CO		2 ml
Sodium thiosulfate	$Na_2S_2O_3$	1	20 ml
Silver nitrate	$AgNO_3$	0.1	10 ml
Distilled water	H ₂ O		48 ml

Fórmula química para el depósito de sulfuro de antimonio-plata (AgSbS₂)

La película delgada es colocada en una caja petri (cara abajo) para recibir el vapor de selenio.

Incorporación de selenio a presión atmosférica.

El tratamiento térmico se debe realizar dentro de una campana de extracción para evitar inhalar el vapor de selenio.

XRD en haz rasante ($\partial = 1^{\circ}$) de películas delgadas de AgSbS₂ y AgSbS₂ + Se sobre acero inoxidable: a) acero inoxidable, b) AgSbS₂ amorfo, c) AgSbS₂ cristalizado d y e) AgSbS₂ + Se 5 min y 10 min respectivamente.

Deposito químico de sulfuro de cadmio: 80 °C

Dispositivo semiconductor: Diodo SS304/AgSb(S,Se)₂/CdS

Diagrama diodo ideal

Heterounión principal: Ag/SS304/AgSb(S,Se)₂/CdS/Ag

 μ SMU - Equipo de medición de curva IV de bajo costo (I_{max} = 40 mA, V_{max} = 5V) calibrado con equipo Keithley 2400

Diodo de silicio (Linea Base)

Curva I-V de un diodo silicio 1N4007

Curva I-V semi-logaritmica de un diodo 1N4007

La búsqueda de materiales semiconductores emergentes es un tema relevante a nivel internacional. Por lo tanto, el desarrollo de celdas solares con calcogenuros de antimonio-plata posiciona a Mexico como pionero en esta investigación.

Desarrollamos prototipos de celdas solares de AgSb(S,Se)₂ en configuración superestrato con η = 0.65%. A corto plazo, es importante analizar los mecanismos de recombinación en la celda solar y proponer estrategias para incrementar J_{sc}.

La investigación sobre celdas solares flexibles muestra la formación de diodos AgSb(S,Se)₂/CdS sobre acero inoxidable. El siguiente paso es colocar los contactos frontales (i-ZnO/ZnO:Al) para obtener la celda solar funcional.

Lab101 del CIDS-ICUAP

Investigador Principal - Dr. Roman Romano Trujillo

roman.romano@correo.buap.mx

Posdoctorado:

Dr. Jesús Capistrán

Doctorado:

M.C. Irving Marquez M. Gabriela Esquina

Licenciatura:

Gustavo Ibarra Ulises Paki

Lab101 del CIDS-ICUAP

Investigador Principal - Dr. Roman Romano Trujillo roman.romano@correo.buap.mx

Únete a PVLab.mx para obtener tu maestría/doctorado en el desarrollo de dispositivos semiconductores y energías renovables.

Posgrado del Instituto de Ciencias de la #BUAP con derecho a beca #Conahcyt

Más informes: pvlab.mx@gmail.com, 777-188-5442

Agradezco al Instituto de Ciencias de la BUAP y al CA-97 Materiales y Dispositivos Semiconductores por el apoyo otorgado en la presente estancia postdoctoral

