Procesos de conducción eléctrica en Semiconductores
Curriculum
- 6 Sections
- 78 Lessons
- 10 Weeks
Expand all sectionsCollapse all sections
- Informacion generalReglas generales del curso5
- Teoría de semiconductores inorgánicos28
- 2.1Semiconductor materials
- 2.2Compound semiconductors
- 2.3Emergent photovoltaic materials
- 2.4Crystal structure (Periodic table of elements)
- 2.5Crystal structure of Copper (Cu)
- 2.6Example: Find the density of copper (Cu)
- 2.7Challenge: Find the lattice parameter of copper from XRD
- 2.8Crystal structure of silicon (Si)
- 2.9Example: Find the density of silicon (Si)
- 2.10Valance electrons
- 2.11Valence bonds in silicon
- 2.12Energy Bands (T = 0 K)
- 2.13Example: Plot the bandgap with temperature Eg(T)
- 2.14Complex Energy Band Structure
- 2.15Density of states N(E)
- 2.16Fermi Diract distribution function F(E)
- 2.17Activity: Plot F(E) at different temperatures
- 2.18Video Tutorial – Python en Google Colab
- 2.19Approximations of Fermi distribution
- 2.20Activity: Plot the aproximations of Fermi-Diract distribution
- 2.21Electrons in the conduction band
- 2.22Holes in the valence band
- 2.23Example: Estimate Nc for silicon at 300 K
- 2.24Example: Estimate m_p of silicon at room temperature
- 2.25Fermi level for a intrinsic semiconductor
- 2.26Intrinsic carrier density (n_i)
- 2.27Challenge: Plot ni of silicon as a function of temperature
- 2.28Examen Unidad 01
- Fenómenos de transporte en semiconductores inorgánicos27
- 3.1Introduction
- 3.2Mobility (Majority carriers, electrons)
- 3.3Lattice scattering and Impurity scattering
- 3.4Mobility as function of doping concentration (T=300K)
- 3.5Electric field applied to a semiconductor
- 3.6Drift current
- 3.7Extrinsic semiconductors
- 3.8Four point probe
- 3.9Resistivity vs impurity concentration
- 3.10Hall effect
- 3.11Example: Find the Hall voltage
- 3.12Carrier diffusion – Fick’s Law
- 3.13Diffusion Current
- 3.14Example: Calculate the difussion current
- 3.15Diffusivity and mobility relationship -Einstein Relation
- 3.16Example: Einstein Relation
- 3.17Current density ( Drift + difussion) under low elctric field
- 3.18Example: Current density (Drift + diffusion)
- 3.19Generation and Recombination process (Introduction)
- 3.20Direct recombination ( Direct band semiconductor)
- 3.21Net recombination rate (Direct recombination)
- 3.22Minority carrier life time (n-type semiconductor)
- 3.23Example: minority carriers generation under illumination
- 3.24Quasi-Fermi level (non-equilbrium condition)
- 3.25Example: Quasi-Fermi level at room temperature
- 3.26Indirect recombination (Indirect band semiconductors)
- 3.27Examen Unidad 02
- Teoría de semiconductores orgánicos18
- 4.1Introduction
- 4.2Band gap of common organic semiconductors
- 4.3Conduction mechanism
- 4.4Effective mobility in Organic Semiconductors
- 4.5Total electric current (J)
- 4.6Carbon electron configuration (Ground state)
- 4.7Single bonds (sp3 hybridization)
- 4.8Double bonds (sp2 hybridization)
- 4.9Principle of conjugation
- 4.10Tarea: Presentación Química y Diagramas de Energía
- 4.11Fom Molecular Orbitals to Band Structure
- 4.12Dislocation of electrons (aromatic compounds)
- 4.13Dislocation of electrons (linear polymers)
- 4.14Room temperature conductivity
- 4.15Energy diagram of amorphous materials
- 4.16Effect of traps in electrical properties
- 4.17Diagramas de Mott-Shottky
- 4.18Activation energy of electrica current
- Fenómenos de transporte en semiconductores orgánicos0
- Prácticas de laboratorio y aplicaciones0
Challenge: Plot ni of silicon as a function of temperature
El reto del día es obtener la grafica de para silicio en función de la temperatura. Tal como se oberva en la siguiente imagen

Utiliza tus nuevas habilidades de Python y Google Colab
Nota: Recuerda que tanto Nv, Nc, y Eg varian en función de la temperatura por lo tanto debes incluir su comportamiento.